Understanding ROR1

ROR1, an oncogene recently discovered on chronic lymphocytic leukemia (CLL) B cells, is being studied by researchers as a potential target for CLL treatment. Dr. Brian Koffman met with Dr. Thomas Kipps, who is researching ROR1, at the 2014 American Society of Clinical Oncology (ASCO) meeting to discuss this oncogene and its potential use in treating CLL.

Click HERE: https://www.youtube.com/watch?v=Zji6Fux_WGo

Thanks to Patient Power!fig1

 

Hitting a CLL Treatment “Home Run”

As more chronic lymphocytic leukemia CLL treatments are approved, with many more in development, are researchers closer to hitting a “home run” in treating the disease? Patient advocate Dr. Brian Koffman met with CLL expert Dr. Thomas Kipps at ASCO 2014 to explore emerging therapies and the goal for patients to achieve deep remission.

Click here:  https://www.youtube.com/watch?v=CYS78SbXjKAHome run

Thanks to Patient Power!

PCR duplicates in deep sequencing experiments and potential biasing

Published on the August 7th (2014) in the journal of Genome Biology:

Accurate allele frequencies are important for measuring subclonal heterogeneity and
clonal evolution. Deep-targeted sequencing data can contain PCR duplicates, inflating perceived read depth. Here we adapted the Illumina TruSeq Custom Amplicon kit to include single molecule tagging (SMT) and show that SMT-identified duplicates arise from PCR. We demonstrate that retention of PCR duplicate reads can imply clonal evolution when none exists, while their removal effectively controls the false positivhiseqe rate. Additionally, PCR duplicates alter estimates of subclonal heterogeneity in tumor samples. Our method simplifies PCR duplicate identification and emphasizes their removal in studies of tumor heterogeneity and clonal evolution.

For more details click here