Understanding ROR1

ROR1, an oncogene recently discovered on chronic lymphocytic leukemia (CLL) B cells, is being studied by researchers as a potential target for CLL treatment. Dr. Brian Koffman met with Dr. Thomas Kipps, who is researching ROR1, at the 2014 American Society of Clinical Oncology (ASCO) meeting to discuss this oncogene and its potential use in treating CLL.

Click HERE: https://www.youtube.com/watch?v=Zji6Fux_WGo

Thanks to Patient Power!fig1

 

Prolonged lymphocytosis during Ibrutinib therapy

The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has outstanding activity in patients with chronic lymphocytic leukemia. Most patients experience lymphocytosis, representing lymphocyte egress from nodal compartments.

This resolves within 8 months in the majority of patients, but a subgroup has lymphocytosis lasting >12 months. Here we report a detailed characterization of patients with persistent lymphocytosis during ibrutinib therapy. Signaling evaluation showed that while BTK is inhibited, downstream mediators of B-cell receptor (BCR) signaling are activated in persistent lymphocytes. These cells cannot be stimulated through the BCR and do not show evidence of target gene activation.

Progression-free survival is not inferior for patients with prolonged lymphocytosis vs those with traditional responses. Thus, prolonged lymphocytosis is common following ibrutinib treatment, likely represents the persistence of a quiescent clone, and does not predict a subgroup of patients likely to relapse early.

For more information: CLICK HERE

Idelalisib and Rituximab in relapsed chronic lymphocytic leukemia.

Patients with relapsed chronic lymphocytic leukemia (CLL) who have clinically significant coexisting medical conditions are less able to undergo standard chemotherapy. Effective therapies with acceptable side-effect profiles are needed for this patient population.

The combination of idelalisib and rituximab, as compared with placebo and rituximab, significantly improved progression-free survival, response rate, and overall survival among patients with relapsed CLL who were less able to undergo chemotherapy. (Funded by Gilead; ClinicalTrials.gov number, NCT01539512.).

For More information about this publication: CLICK HERE

Hot on the ROR1 t(r)ail

ROR1 can interact with TCL1 and enhance leukemogenesis in Eμ-TCL1 transgenic mice.

Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncoembryonic antigen found on chronic lymphocytic leukemia (CLL) B cells, but not on normal adult tissues. We generated transgenic (Tg) mice with human ROR1 regulated by the murine Ig promoter/enhancer. In contrast to nontransgenic littermates, such animals had B-cell-restricted expression of ROR1 and could develop clonal expansions of ROR1(bright)CD5(+)B220(low) B cells resembling human CLL at ≥ 15 mo of age. Because immune-precipitation and mass spectrometry studies revealed that ROR1 could complex with T-cell leukemia 1 (TCL1) in CLL, we crossed these animals with Eµ-TCL1-Tg (TCL1) mice. Progeny with both transgenes (ROR1 × TCL1) developed CD5(+)B220(low) B-cell lymphocytosis and leukemia at a significantly younger median age than did littermates with either transgene alone. ROR1 × TCL1 leukemia B cells had higher levels of phospho-AKT than TCL1 leukemia cells and expressed high levels of human ROR1, which we also found complexed with TCL1.

Transcriptome analyses revealed that ROR1 × TCL1 leukemia cells had higher expression of subnetworks implicated in embryonic and tumor-cell proliferation, but lower expression of subnetworks involved in cell-cell adhesion or cell death than did TCL1 leukemia cells. ROR1 × TCL1 leukemia cells also had higher proportions of Ki-67-positive cells, lower proportions of cells undergoing spontaneous apoptosis, and produced more aggressive disease upon adoptive transfer than TCL1 leukemia cells. However, treatment with an anti-ROR1 mAb resulted in ROR1 down-modulation, reduced phospho-AKT, and impaired engraftment of ROR1 × TCL1 leukemia cells. Our data demonstrate that ROR1 accelerates development/progression of leukemia and may be targeted for therapy of patients with CLL.

For More Information: CLICK HERE

Our New Newsletter is HOT off the Press!

We have our new newsletter is available!!  New news and articles letting you know the latest news in regards to CLL and the Blood Cancer Research Fund. Special thanks to Carolina Bump for her tireless efforts to get this information together!

Click here: Insight – BCRF Winter 2013 Newsletter 

Stopping the Spread of Cancer

Stopping cancer’s spread: New protein found to control deadly cancer metastasis

Researchers have found a critical element that may explain why some cancers spread farther and faster than others, a discovery that could lead to one of the Holy Grails of cancer treatment: containing the disease.

Scientists from the University of California, San Diego School of Medicine, Dr. Thomas J. Kipps and colleagues,  have identified a protein that seems to serve as a switch, regulating the spread of cancer from the primary tumor to distant spots in the body – a process known as metastasis.  The protein is used by embryo cells during early development, but then disappears from the body after an individual comes out of the womb.

Read more- Fox News Report: Dr. Kipps

ROR1 Antibody

Ibrutinib, a potential breakthrough in treating chronic lymphocytic leukemia (CLL)

(TIME.com) — It’s called ibrutinib, and it’s a potential breakthrough in treating chronic lymphocytic leukemia (CLL) that could leave patients with fewer side effects than chemotherapy.   

 

Read the story from CNN:  Ibrutinib new hope for CLL Treatment

 

Power of Positive Thinking

Stay Positive!  Several questions about the power of a positive outlook have come into us here at the BCRF.  While we are not psychologist there are volumes of information and research into the importance of positive attitudes!  Click on the links below for just some of the information that is out there:

“The day is what you make it! So why not make it a great one?” ~ Steve Schulte

Can you make the train go in either direction? Try it! It is possible to make it go away and towards you!

You’re Going Down CLL!!!

New pieces to the puzzle are being identified in the Kipps’ BCRF lab:

(click to see article links)

UCSD-led team finds leukemia-killing molecule

Dr. Thomas Kipps and researchers at the UC San Diego Moores Cancer Center have found a monoclonal antibody named RG7356 that may be effective in in killing chronic lymphocytic leukemia cells without harming healthy cells.

Read about it HERE